已知:关于x的方程(a-1)x2-(a+1)x+2=0.(1)当a取何值时,方程(a-1)x2-(a+1)x+2=0有两个不相等的实数根;(2)当整数a取何值时,方程(a-1)x2-(a+1)x+2=0的根都是正整数.-数学

题文

已知:关于x的方程(a-1)x2-(a+1)x+2=0.
(1)当a取何值时,方程(a-1)x2-(a+1)x+2=0有两个不相等的实数根;
(2)当整数a取何值时,方程(a-1)x2-(a+1)x+2=0的根都是正整数.
题型:解答题  难度:中档

答案

(1)∵方程(a-1)x2-(a+1)x+2=0有两个不相等的实数根,

a-1≠0
△>0

a≠1
△=[-(a+1)]2-4(a-1)?2>0

∴a≠1且a≠3.

(2)①当a-1=0时,即a=1时,原方程变为-2x+2=0.
方程的解为 x=1;                            
②当a-1≠0时,原方程为一元二次方程(a-1)x2-(a+1)x+2=0.
△=b2-4ac=[-(a+1)]2-4(a-1)?2=(a-3)2≥0.
x=
(a+1)±(a-3)
2(a-1)
,解得x1=1,x2=
2
a-1

∵方程(a-1)x2-(a+1)x+2=0都是正整数根.
∴只需
2
a-1
为正整数.
∴当a-1=1时,即a=2时,x2=2;
当a-1=2时,即a=3时,x2=1;   
∴a取1,2,3时,方程(a-1)x2-(a+1)x+2=0的根都是正整数.

据专家权威分析,试题“已知:关于x的方程(a-1)x2-(a+1)x+2=0.(1)当a取何值时,方程(a-1)..”主要考查你对  一元二次方程的解法,一元二次方程的应用,一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的解法一元二次方程的应用一元二次方程根的判别式

考点名称:一元二次方程的解法

  • 一元二次方程的解:
    能够使方程左右两边相等的未知数的值叫做方程的解。
    解一元二次方程方程:
    求一元二次方程解的过程叫做解一元二次方程方程。

  • 韦达定理:
    一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
    一般式:ax2+bx+c=0的两个根x1和x2关系:
    x1+x2= -b/a
    x1·x2=c/a

  • 一元二次方程的解法:
    1、直接开平方法
    利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
    直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
    用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

    2、配方法
    配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
    配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

    3、公式法
    公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
    一元二次方程 的求根公式:
    求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

    4、因式分解法
    因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。