要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化。(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积-九年级数学
题文
要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化。 (1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的 ,求P、Q两块绿地周围的硬化路面的宽; (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由。 |
答案
解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得: 解之,得: 经检验,不符合题意,舍去 所以,两块绿地周围的硬化路面宽都为10米。 (2)设想成立,设圆的半径为r米,O1到AB的距离为y米,根据题意,得: 解得:符合实际 所以,设想成立,此时,圆的半径是10米。 |
据专家权威分析,试题“要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化。(1)设计方..”主要考查你对 一元二次方程的应用,二元一次方程的应用 等考点的理解。关于这些考点的“档案”如下:
一元二次方程的应用二元一次方程的应用
考点名称:一元二次方程的应用
- 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
列一元二次次方程组解应用题的一般步骤:
可概括为“审、设、列、解、答”五步,即:
(1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
(2)设:是指设未知数;
(3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
(4)解:解这个方程,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
提示:
①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。
常见题型公式:
工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。利润赢亏问题
销售问题中常出现的量有:进价、售价、标价、利润等
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率存款利率问题:
利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)行程问题:
基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
路程=速度×时间。
①相遇问题:快行距+慢行距=原距;
②追及问题:快行距-慢行距=原距;
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
逆水(风)速度=静水(风)速度-水流(风)速度
考点名称:二元一次方程的应用
- 定义的应用,判定一个方程是否是二元一次方程;求方程的未知系数及解应用题。
列二元一次方程组解应用题的一般步骤:
可概括为“审、找、列、解、答”五步,即:
(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
(2)找:找出能够表示题意两个相等关系;
(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;
(4)解:解这个方程组,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.
常见问题及解决:
一、数字问题:
例:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系表示为:
因此,所求的两位数是14.
点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.
二、利润问题:
商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.
利润的计算一般有两种方法:
①利润=卖出价-进价;
②利润=进价×利润率(盈利百分数)。
特别注意“利润”和“利润率”是不同的两个概念。
三、配套问题:
产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:
①“二合一”问题:如果a件甲产品和b件乙产品配成一套,
那么甲产品数的b倍等于乙产品数的a倍,即:;
②“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,
那么各种产品数应满足的相等关系式是: 。
四、行程问题:
“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:
“相向而遇”时,两者所走的路程之和等于它们原来的距离;
“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离。
五、货运问题:
由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等。
六、工程问题:
工程问题与行程问题相类似,关键要抓好三个基本量的关系,即
“工作量=工作时间×工作效率”以及它们的变式:
“工作时间=工作量÷工作效率,
工作效率=工作量÷工作时间”。
其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |