如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止,已知在-九年级数学

题文

如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止,已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm。
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由。
题型:解答题  难度:偏难

答案

解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形,
①当点P与点N重合时,
由x2+2x=20,得x1=,x2=-(舍去),
因为BQ+CM=x+3x=<20,此时点Q与点M不重合,
所以x=符合题意,
②当点Q与点M重合时,
由x+3x=20,得x=5,
此时DN=x2=25>20,不符合题意,
故点Q与点M不能重合,所以所求x的值为
(2)由(1)知,点Q只能在点M的左侧,
①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),
解得x1=0(舍去),x2=2,
当x=2时四边形PQMN是平行四边形,
②当点P在点N的右侧时,
由20-(x+3x)=(2x+x2)-20,
解得x1=-10(舍去),x2=4,
当x=4时四边形NQMP是平行四边形,
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形不能为等腰梯形,
理由如下:
过点Q,M分别作AD的垂线,垂足分别为点E,F,
由于2x>x,
所以点E一定在点P的左侧,
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即2x-x=x2-3x,解得x1=0(舍去),x2=4,
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形。

据专家权威分析,试题“如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿..”主要考查你对  一元二次方程的应用,平行四边形的判定,梯形,梯形的中位线  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的应用平行四边形的判定梯形,梯形的中位线

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。

考点名称:梯形,梯形的中位线

  • 梯形的定义:
    一组对边平行,另一组对边不平行的四边形叫做梯形。
    梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
    梯形的中位线:
    连结梯形两腰的中点的线段。 

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

    梯形的周长与面积
    梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
    等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
    梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
    变形1:h=2s÷(a+b);
    变形2:a=2s÷h-b;
    变形3:b=2s÷h-a。
    另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
    对角线互相垂直的梯形面积为:对角线×对角线÷2。

  • 梯形的分类


    等腰梯形:两腰相等的梯形。
    直角梯形:有一个角是直角的梯形。

    等腰梯形的性质:
    (1)等腰梯形的同一底边上的两个角相等。
    (2)等腰梯形的对角线相等。
    (3)等腰梯形是轴对称图形。

    等腰梯形的判定:
    (1)定义:两腰相等的梯形是等腰梯形
    (2)定理:在同一底上的两个角相等的梯形是等腰梯形
    (3)对角线相等的梯形是等腰梯形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐