学以致用问题:任意给定一个矩形,是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半?讨论:小明说:一定存在.小华说:一定不存在.小红说:不一定存在.探究:老师-数学

题文

学以致用
问题:任意给定一个矩形,是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半?
讨论:小明说:一定存在.
小华说:一定不存在.
小红说:不一定存在.
探究:老师和大家一起举例说明:(1)如果已知矩形的长和宽和面积分别为7和1,那么它的周长和面积分别16和7,则所求的矩形周长和面积应为8和3.5;
问题转化为:周长为8,面积为3.5的矩形是否存在?
我们假设所求矩形的长为x,固定它的周长为8,则它的宽为______
可列出方程______
解得:______
所以:______
(2)①如果矩形的长和宽分别为5和1,这时情况如何?
②综上所得,你认为______的说法正确.
题型:解答题  难度:中档

答案

(1)设所求矩形的长为x,固定它的周长为8,则它的宽为 4-x,
可列出方程 x(4-x)=3.5
解得:x1=2+

2
,x2=2-

2

所以:矩形的长为2+

2

(2)①如果矩形的长和宽分别为5和1,则矩形的周长为12,面积为5,
∴新矩形的周长为6,面积为2.5.
设所求矩形的长为x,固定它的周长为6,则它的宽为 3-x,
可列出方程 x(3-x)=2.5
△<0,没有实数根
所以不存在这样的矩形;
②由以上两个结论可得小红的说法正确;
故答案为:(1)4-x;x(4-x)=3.5;x1=2+

2
,x2=2-

2
;矩形的长为2+

2

(2)②小红.

据专家权威分析,试题“学以致用问题:任意给定一个矩形,是否存在另一个矩形,它的周长和..”主要考查你对  一元二次方程的应用  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的应用

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐