讲完“有理数的除法”后,老师在课堂上出了一道计算题:1513÷(-8),不一会儿,不少同学算出了答案,老师把班上同学的解题过程归类写到黑板上.方法一:原式=463×(-18)=-4624=-231-数学

首页 > 考试 > 数学 > 初中数学 > 有理数乘法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

讲完“有理数的除法”后,老师在课堂上出了一道计算题:15
1
3
÷(-8),不一会儿,不少同学算出了答案,老师把班上同学的解题过程归类写到黑板上.
方法一:原式=
46
3
×(-
1
8
)=-
46
24
=-
23
12
=-1
11
12

方法二:原式=(15+
1
3
)×(-
1
8
)=15×(-
1
8
)+
1
3
×(-
1
8
)=-
15×3+1
24
=-1
11
12

方法三:原式=(16-
2
3
)÷(-8)=16÷(-8)-
2
3
÷(-8)=-2+
1
12
=-1
11
12

对这三种方法,大家议论纷纷,你认为哪种方法最好?说出理由,并说说本题对你有何启发.
题型:解答题  难度:中档

答案

方法三最好,理由是:通过这种方法将一个原本复杂的问题化得非常简捷;
启发:解决问题的方法有多种,我们要选择其中最简单的方法来解决问题.

据专家权威分析,试题“讲完“有理数的除法”后,老师在课堂上出了一道计算题:1513÷(-8),..”主要考查你对  有理数乘法,有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数乘法有理数除法

考点名称:有理数乘法

  • 有理数乘法定义:
    求两个有理数因数的积的运算叫做有理数的乘法。

  • 有理数乘法的法则:
    (1)同号两数相乘,取正号,并把绝对值相乘;
    (2)异号两数相乘,取负号,并把绝对值相乘;
    (3)任何数与0相乘都得0。
    几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

    有理数乘法的运算律:
    (1)交换律:ab=ba;
    (2)结合律:(ab)c=a(bc);
    (3)分配律:a(b+c)=ab+ac。

  • 记住乘法符号法则:
    1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
    2.几个数相乘,只要有一个数为0,积就是0。

    乘法法则的推广:
    1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
    2.几个数相乘,有一个因数为零,积就为零;
    3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

    有理数乘法的注意:
    1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
    2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
    3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐