已知关于x的一元二次方程有两个实数根.(1)若m为正整数,求此方程的根.(2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围.-九年级数学
题文
已知关于x的一元二次方程有两个实数根. (1)若m为正整数,求此方程的根. (2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围. |
答案
解:(1)∵一元二次方程有两个实数根, ∴△=≥0, ∴m≤1. ∵m为正整数, ∴m=1,当m=1时, 此方程为, ∴此方程的根为. (2)∵此方程的两个实数根为a、b, ∴,. ∴y=ab﹣2b2+2b+1=ab﹣2(b2﹣b)+1 ==. 解法一:∵m=(y﹣1), 又∵m≤1, ∴m=(y﹣1)≤1, ∴y的取值范围为y≤. 解法二:∵m≤1, ∴≤, ∴≤, ∴y的取值范围为y≤. |
据专家权威分析,试题“已知关于x的一元二次方程有两个实数根.(1)若m为正整数,求此方程..”主要考查你对 一元二次方程根的判别式,一元二次方程根与系数的关系 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根的判别式一元二次方程根与系数的关系
考点名称:一元二次方程根的判别式
- 根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1 ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2 ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3 ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4 ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5 ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6 ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。 - 根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
考点名称:一元二次方程根与系数的关系
- 一元二次方程根与系数的关系:
如果方程 的两个实数根是那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 一元二次方程根与系数关系的推论:
1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
提示:
①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |