已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2-4ac>0;②若方程两根为-1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等-数学

题文

已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2-4ac>0;
②若方程两根为-1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有(  )
A.①②③B.①②④C.②③④D.①②③④
题型:单选题  难度:中档

答案

①当x=1时,有若a+b+c=0,即方程有实数根了,
∴△≥0,故错误;
②把x=-1代入方程得到:a-b+c=0 (1)
把x=2代入方程得到:4a+2b+c=0  (2)
把(2)式减去(1)式×2得到:6a+3c=0,
即:2a+c=0,故正确;
③方程ax2+c=0有两个不相等的实数根,
则它的△=-4ac>0,
∴b2-4ac>0而方程ax2+bx+c=0的△=b2-4ac>0,
∴必有两个不相等的实数根.故正确;
④若b=2a+c则△=b2-4ac=(2a+c)2-4ac=4a2+c2
∵a≠0,
∴4a2+c2>0故正确.
②③④都正确,故选C.

据专家权威分析,试题“已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2..”主要考查你对  一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐