关于x的方程x2+m(1-x)-2(1-x)=0,下面结论正确的是()A.m不能为0,否则方程无解B.m为任何实数时,方程都有实数解C.当2<m<6时,方程无实数解D.当m取某些实数时,方程有无穷多个-数学
题文
关于x的方程x2+m(1-x)-2(1-x)=0,下面结论正确的是( )
|
答案
∵x2+m(1-x)-2(1-x)=0, ∴x2+(-m+2)x+(m-2)=0, A、当m=0时,方程可化为x2+2x-2=0, b2-4ac=22-4×1×(-2)=12>0,此时方程有两个不相等的解,故本选项错误; B、b2-4ac=(-m+2)2-4×1×(m-2)=m2-8m+12=(m-4)2-4≥0, ∴说m为任何实数时,方程都有实数解不对,故本选项错误; C、(m-4)2-4≥0, ∴2<m<6,故本选项正确; D、∵方程是一元二次方程, ∴一元二次方程解的情况是①有两个不相等的解,②有两个相等的解,③方程无解,故本选项错误; 故选C. |
据专家权威分析,试题“关于x的方程x2+m(1-x)-2(1-x)=0,下面结论正确的是()A.m不能为0,..”主要考查你对 一元二次方程根的判别式 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根的判别式
考点名称:一元二次方程根的判别式
- 根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1 ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2 ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3 ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4 ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5 ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6 ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。 - 根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
上一篇:已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2max=0有两个相等的实数根,试说明△ABC一定是直角三角形.-数学
下一篇:若关于x的一元二次方程x2+3x-k=0有实数根,则k的取值范围是()A.k≤-94B.k≥-94C.k≥-94且k≠0D.k>-94且k≠0-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |