已知三整数a,b,c之和为13,且ba=cb,求a的最大值和最小值,并求出此时相应的b与c的值.-数学

题文

已知三整数a,b,c之和为13,且
b
a
=
c
b
,求a的最大值和最小值,并求出此时相应的b与c的值.
题型:解答题  难度:中档

答案

b
a
=
c
b
=x,则b=ax,c=ax2,由a+b+c=13化为a(x2+x+1)=13.
∵a≠0,
∴x2+x+1-
13
a
=0      ①
又因为a,b,c为整数,则方程①的解必为有理数.
即△=1-4(1-
13
a
)=
52
a
-3>0,
解得1≤a<
52
3
,且

为有理数.
故1≤a≤16
当a=1时,方程①化为x2+x-12=0.
解得x1=-4,x2=3,
故amin=1,b=-4,c=16;amin=1,b=3,c=9.
当a=16时,方程①化为x2+x+
3
16
=0.
解得x1=-
3
4
,x2=-
1
4

故amax=16,b=-12,c=9;amax=16,b=-4,c=1.

据专家权威分析,试题“已知三整数a,b,c之和为13,且ba=cb,求a的最大值和最小值,并求..”主要考查你对  一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐