九年级(4)班在一次答题活动中,签筒中有4根形状,大小相同的纸签,签里头分别写上了一个方程:①x2-x=0;②(x-1)2-(2x-5)2=0;③x2+12x+36=0;④x2-3x-1=0.(1)四个方程中有几个方-数学

题文

九年级(4)班在一次答题活动中,签筒中有4根形状,大小相同的纸签,签里头分别写上了一个方程:①x2-x=0;②(x-1)2-(2x-5)2=0;③x2+12x+36=0;④x2-3x-1=0.
(1)四个方程中有几个方程有两个相等的实数根并解有关方程;
(2)小明首先抽签,他看不到纸签上的方程的情况下,从签中随机地抽取一根纸签,那么他抽到两根均为正整数的方程的概率是多少?
题型:解答题  难度:中档

答案

(1)根据题意可得:4个方程中:利用△分析可得1个个方程有两个相等的实数根,即x2+12x+36=0,配方可得,(x+6)2=0,其解为x1=x2=-6;

(2)因为只有方程(x-1)2-(2x-5)2=0的两根均为正整数,所以P(正整数解)=
1
4

据专家权威分析,试题“九年级(4)班在一次答题活动中,签筒中有4根形状,大小相同的纸签..”主要考查你对  一元二次方程根的判别式,概率的意义  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式概率的意义

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。