“顺次连接四边形四条边中点的四边形是矩形”是______事件(填“必然”或“随机”).-数学

首页 > 考试 > 数学 > 初中数学 > 随机事件/2019-05-09 / 加入收藏 / 阅读 [打印]

题文

“顺次连接四边形四条边中点的四边形是矩形”是______事件(填“必然”或“随机”).
题型:填空题  难度:中档

答案

“顺次连接四边形四条边中点的四边形是矩形”是:随机事件.
故答案是:随机.

据专家权威分析,试题““顺次连接四边形四条边中点的四边形是矩形”是______事件(填“必然..”主要考查你对  随机事件,三角形中位线定理,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

随机事件三角形中位线定理矩形,矩形的性质,矩形的判定

考点名称:随机事件

  • 随机事件:
    事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
    在一定条件下,可能发生也可能不发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:随机事件A的概率为0<P(A)<1。

  • 随机事件特点:
    1.可以在相同的条件下重复进行;
    2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;
    3.进行一次试验之前不能确定哪一个结果会出现。
    注意:
    ①随机事件发生与否,事先是不能确定的;
    ②必然事件发生的机会是1;不可能事件发生的机会是0;随机事件发生的机会在0-1之间。
    ③要判断一个事件是必然事件、随机事件、还是不可能事件,要从定义出发。

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
    黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。