在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致,小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,-九年级数学

首页 > 考试 > 数学 > 初中数学 > 列举法求概率/2019-05-18 / 加入收藏 / 阅读 [打印]

题文

在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致,小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同,你赞成谁的观点?
(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;
(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确。
题型:解答题  难度:偏难

答案

解:(1)列表如下:

画树状图如下:

(2)由树状图或表格可知,点共有36种可能的结果,且每种结果出现的可能性相同,点(3,4),(4,3),(2,6),(6,2)在反比例函数的图象上,点(2,3),(3,2),(1,6),(6,1)在反比例函数的图象上, 故点P(m,n)在反比例函数的图象上的概率相同,都是,所以小芳的观点正确。

据专家权威分析,试题“在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一..”主要考查你对  列举法求概率  等考点的理解。关于这些考点的“档案”如下:

列举法求概率

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐