如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形-数学

首页 > 考试 > 数学 > 初中数学 > 列举法求概率/2019-05-18 / 加入收藏 / 阅读 [打印]

题文

如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)
(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数 10 20 30 50 100 150 180 240 330 450
“和为7”出现的频数 2 7 10 16 30 46 59 81 110 150
“和为7”出现的频率 0.20 0.35 0.33 0.32 0.30 0.31 0.33 0.34 0.33 0.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;
(3)根据(2),若0<x<y,试求出x与y的值.


题型:解答题  难度:中档

答案

(1)列表为:
A
B
x 2 3
y (x,y) (2,y) (3,y)
4 (x,4) (2,4) (3,4)
5 (x,5) (2,5) (3,5)
(2)由于出现“和为7”的频率稳定在0.33附近,故出现“和为7”的概率为0.33.

(3)“和为7”的概率为0.33,表中共九种情况,和为7的情况有9×0.33≈3种,由于2、5;3、4;之和为7,所以x、5;x、4;x、y;2、y;3、y中有一组为7即可;
又由于0<x<y,所以
①x+5=7,x=2,y=3,6,7,8,9…
②x+4=7,x=3,y=6,7,8,9…
③x+y=7,x=1,y=6;
④2+y=7,y=5,x=4,1;
⑤3+y=7,y=4,x=1.
由于在每一个扇形内均标有不同的自然数,故只有③成立.

据专家权威分析,试题“如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标..”主要考查你对  列举法求概率,利用频率估算概率  等考点的理解。关于这些考点的“档案”如下:

列举法求概率利用频率估算概率

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

考点名称:利用频率估算概率

  • 在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
    注:
    (1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率;
    (2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
    (3)利用频率估计出的概率是近似值。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐