已知二次函数的图象经过三点(1,0),(-3,0),(0,)。(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(2)若反比例函数的图像与二次函数的图像在第一象限-九年级数学
题文
已知二次函数的图象经过三点(1,0),(-3,0),(0,)。 |
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像; (2)若反比例函数的图像与二次函数的图像在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间。请你观察图像,写出这两个相邻的正整数; (3)若反比例函数的图像与二次函数的图像在第一象限内的交点为A,点A的横坐标为x0满足2<x0<3,试求实数k的取值范围。 |
答案
解:(1)设抛物线的解析式为y=a(x-1)(x+3), 将(0,)代入,解得a=, 所以,抛物线的解析式为, 图象“略”; (2)正确的画出反比例函数在第一象限内的图像, 由图像可知,交点的横坐标x0 落在1和2之间,从而得出这两个相邻的正整数为1与2。 (3)由函数图像或函数性质可知:当2<x<3时, 对,y1随着x增大而增大,对(k>0),y2随着X的增大而减小。 因为A(x0,y0)为二次函数图像与反比例函数图像的交点, 所心当x0=2时,由反比例函数图象在二次函数上方,得y2>y1, 即,解得:k>5; 同理,当x0=3时,由二次函数数图象在反比例上方,得y1>y2, <?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 所以,k的取值范围为5<k<18。 |
据专家权威分析,试题“已知二次函数的图象经过三点(1,0),(-3,0),(0,)。(1)求二次函..”主要考查你对 二次函数的图像,反比例函数的图像,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的图像反比例函数的图像求二次函数的解析式及二次函数的应用
考点名称:二次函数的图像
- 二次函数的图像
是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:
轴对称:
二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧
顶点:
二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
h=-b/2a, k=(4ac-b^2)/4a。
开口:
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。- 决定对称轴位置的因素:
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定与y轴交点的因素:
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k), 与y轴交于(0,C)。
与x轴交点个数:
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。
考点名称:反比例函数的图像
- 反比例函数的图象:
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |