已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧)。(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;(-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的图像/2019-05-20 / 加入收藏 / 阅读 [打印]

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

  • 考点名称:正方形,正方形的性质,正方形的判定

    • 正方形的定义:
      有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
      特殊的长方形。
      四条边都相等且四个角都是直角的四边形叫做正方形。
      有一组邻边相等的矩形是正方形。
      有一个角为直角的菱形是正方形。
      对角线平分且相等,并且对角线互相垂直的四边形为正方形。
      对角线相等的菱形是正方形。

    • 正方形的性质:
      1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
      2、内角:四个角都是90°;
      3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
      4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
      5、正方形具有平行四边形、菱形、矩形的一切性质;
      6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
      正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
      7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
      正方形外接圆面积大约是正方形面积的157%。
      8、正方形是特殊的长方形。

    • 正方形的判定:
      判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
      1:对角线相等的菱形是正方形。
      2:有一个角为直角的菱形是正方形。
      3:对角线互相垂直的矩形是正方形。
      4:一组邻边相等的矩形是正方形。
      5:一组邻边相等且有一个角是直角的平行四边形是正方形。
      6:对角线互相垂直且相等的平行四边形是正方形。
      7:对角线相等且互相垂直平分的四边形是正方形。
      8:一组邻边相等,有三个角是直角的四边形是正方形。
      9:既是菱形又是矩形的四边形是正方形。

      有关计算公式:
      若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
      正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
      正方形周长计算公式: C=4a 。
      S正方形=。(正方形边长为a,对角线长为b)

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐