已知抛物线经过点D(-2,6),与x轴交于A、B两点(B在A的右侧)。(1)求c的值;(2)设点C为该二次函数的图像在x轴上方的一点,直线AC把四边形ABCD的面积二等分,这样的点C是否存在-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的图像/2019-05-20 / 加入收藏 / 阅读 [打印]

2、三角形的三条中线长:

ma=(1/2)2b2+2c2 -a2

mb=(1/2)2c2 +2a2 -b

mc=(1/2)2a2 +2b2 -c

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

 

角平分线线定理:
定理1:在角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
注:定理2的逆命题也成立。
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

 

垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。  
2.垂直平分线上任意一点,到线段两端点的距离相等。  
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  • <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />垂直平分线的尺规作法:
    方法一:
    1、取线段的中点。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
    3、连接这两个交点。
    原理:等腰三角形的高垂直等分底边。
    方法二:
    1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
    2、连接这两个交点。原理:两点成一线。
    垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)

  • 考点名称:直角三角形的性质及判定

    • 直角三角形定义:
      有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

    • 直角三角形性质:
      直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
      性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
      性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
      性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
      性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
      性质5:

      如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
      (1)(AD)2=BD·DC。
      (2)(AB)2=BD·BC。
      (3)(AC)2=CD·BC。
      性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
      在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
      性质7:如图,1/AB2+1/AC2=1/AD2
      性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
      性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

    • 直角三角形的判定方法:
      判定1:定义,有一个角为90°的三角形是直角三角形。
      判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
      判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
      判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
      判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
      判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
      判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐