如图,在平面直角坐标系xoy中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线,所得抛物线与x轴交于A,B两点(点A在点B的左边),与x轴交于点C,顶点为D。(1)写出h-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的图像/2019-05-20 / 加入收藏 / 阅读 [打印]

题文

如图,在平面直角坐标系xoy中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线,所得抛物线与x轴交于A,B两点(点A在点B的左边),与x轴交于点C,顶点为D。
(1)写出h,k的值;
(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。
题型:解答题  难度:偏难

答案

解:(1)∵由平移的性质知,的顶点坐标为D(-1,-4),
∴h=-1,k=-4;
(2)由(1)得
当y=0时,,解之,得
∴A(-3,0),B(1,0),
又当x=0时,
∴C点坐标为(0,-3)
又抛物线顶点坐标D(-1,-4),
作抛物线的对称轴x=-1交x轴于点E,DF⊥轴于点F,易知
在Rt△AED中,AD2=22+42=20,
在Rt△AOC中,AC2=32+32=18,
在Rt△CFD中,CD2=12+12=2,
∴AC2+CD2=AD2
∴△ACD是直角三角形;
(3)存在,
作OM∥BC交AC于M,M点即为所求点;
由(2)知,△AOC为等腰直角三角形,∠BAC=45°,AC=
由△AOM∽△ABC,得,即
过M点作MG⊥AB于点G,则AG=MG=
OG=AO-AG=3-
又点M在第三象限,所以M(-,-)。

据专家权威分析,试题“如图,在平面直角坐标系xoy中,把抛物线向左平移1个单位,再向下..”主要考查你对  二次函数的图像,直角三角形的性质及判定,勾股定理,相似三角形的判定  等考点的理解。关于这些考点的“档案”如下:

二次函数的图像直角三角形的性质及判定勾股定理相似三角形的判定

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
    抛物线的主要特征:
    ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
    ②有对称轴;
    ③有顶点;
    ④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:
    轴对称:

    二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    b=0,对称轴是y轴
    a,b异号,对称轴在y轴右侧

    顶点:
    二次函数图像有一个顶点P,坐标为P ( h,k )
    当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
    h=-b/2a, k=(4ac-b^2)/4a。

    开口:
    二次项系数a决定二次函数图像的开口方向和大小。
    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐