已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒。(1)当k=-1时-九年级数学

题文

已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒。
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1)。
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值;
(2)当k=-时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2)。
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?

题型:解答题  难度:偏难

答案

解:(1)①C(1,2),Q(2,0);
②由题意得:P(t,0),C(t,-t+3),Q(3-t,0),
分两种情况讨论:
情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,
∴CQ⊥OA,
∵CP⊥OA,
∴点P与点Q重合,OQ=OP,
即3-t=t,
∴t=1.5;
情形二:当△AQC∽△AOB时,∠ACQ=∠AOB=90°,
∵OA=OB=3,
∴△AOB是等腰直角三角形,
∴△ACQ也是等腰直角三角形,
∵CP⊥OA,
∴AQ=2CP,
即t=2(-t+3),
∴t=2,
∴满足条件的t的值是1.5秒或2秒;
(2)①由题意得:C(t,-
∴以C为顶点的抛物线解析式是y=

解得
过点D作DE⊥CP于点E,
则∠DEC=∠AOB=90°,
∵DE∥OA,
∴∠EDC=∠OAB,
∴△DEC∽△AOB

∵AO=4,AB=5,DE=
∴CD=
②∵
CD边上的高=

∴S△COD为定值,
要使OC边上的高h的值最大,只要OC最短,
因为当OC⊥AB时OC最短,
此时OC的长为,∠BCO=90°
∵∠AOB=90°
∴∠COP=90°-∠BOC=∠OBA
又∵CP⊥OA
∴Rt△PCO∽Rt△OAB
,OP=
即t=
∴当t为秒时,h的值最大。

据专家权威分析,试题“已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点..”主要考查你对  求二次函数的解析式及二次函数的应用,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐