如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行。直线y=-x+m过点C,交y轴于-九年级数学

题文

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行。直线y=-x+m过点C,交y轴于D点。
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标。

题型:解答题  难度:偏难

答案

解:(1)∵抛物线交轴于点A(-3,0),点B(1,0),
∴设抛物线的函数表达式为
又∵抛物线交y轴于点E(0,-3),
将(0,-3)代入上式,得a=1,
∴抛物线的函数表达式为,即
(2)∵点C是点A(-3,0)关于点B(1,0)的对称点,
∴点C坐标(5,0),
∴将点C坐标代入y=-x+m,得m=5,
∴直线CD的函数表达式为y=-x+5,
设K点的坐标为(t,0),
则H点的坐标为(t,-t+5),G点的坐标为(t,t2+2t-3),
∵点K为线段AB上一动点,
∴-3≤t≤1,
∴HG=(-t+5)-(t2+2t-3)=-t2-3t+8=-
∵-3<-<1,
∴当t=-时,线段HG的长度有最大值
(3)∵点F是线段BC的重点,点B(1,0),点C(5,0),
∴点F的坐标为(3,0),
∵直线l过点F且与y轴平行,
∴直线l的函数表达式为x=3,
∵点M在直线l上,点N在抛物线上,
∴设点M的坐标为(3,m),点N的坐标为(n,n2+2n-3),
∵点A(-3,0),点C(5,0),
∴AC=8,
分情况讨论:
①若线段AC是以点A、C,M、N为顶点的平行四边形的边,则需MN∥AC,且MN=AC=8,
当点N在点M的左侧时,MN=3-n,
∴3-n=8,解得n=-5,
∴N点的坐标为(-5,12),
当点N在点M的右侧时,MN=n-3,
∴n-3=8,解得n=11,
∴N点的坐标为(11,140),
②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线,
由点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,
取点F关于点B的对称点P,则P点坐标为(-1,0),
过P点作NP⊥x轴,交抛物线于点N,
将x=-1代入y=x2+2x-3,得y=-4,
过点N,B作直线NB交直线l于点M,
在△BPN和△BFM中,∠NBP=∠MBF,BF=BP,∠BPN=∠BFM=90°,
∴△BPN≌△BFM,
∴NB=MB,
∴四边形ANCM为平行四边形,
∴坐标(-1,-4)的点N符合条件,
综上所述,当点N的坐标为(-5,12),(11,140),(-1,-4)时,以点A、C、M、N为顶点的四边形是平行四边形。

据专家权威分析,试题“如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的最大值和最小值,平行四边形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的最大值和最小值平行四边形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐