已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C。(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否-九年级数学
题文
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C。 (1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标; (2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标。 |
答案
解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点, ∴, 解得:, ∴; ∴点C的坐标为:(0,3); |
|
(2)当△PAB是以AB为直角边的直角三角形,且∠PAB=90°, ∵A(3,0),B(4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°, ∴AO=DO, ∵A点坐标为(3,0), ∴D点的坐标为:(0,3), ∴直线AD解析式为:y=kx+b, 将A,D分别代入得: ∴0=3k+b,b=3, ∴k=-1, ∴y=-x+3, ∴=-x+3, ∴x2-3x=0, 解得:x=0或3, ∴y=3或0(不合题意舍去), ∴P点坐标为(0,3), 当△PAB是以AB为直角边的直角三角形,且∠PBA=90°, 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D点坐标为:(0,5),B点坐标为:(4,1), ∴直线AD解析式为:y=kx+b, 将B,D分别代入得: ∴1=4k+b,b=5, ∴k=-1, ∴y=-x+5, ∴=-x+5, ∴x2-3x-4=0, 解得:x1=-1,x2=4, ∴y1=6,y2=1, ∴P点坐标为(-1,6),(4,-1), ∴点P的坐标为:(-1,6),(4,-1),(0,3); |
|
(3)作EM⊥BO, ∵当OE∥AB时,△FEO面积最小, ∴∠EOM=45°, ∴MO=EM, ∵E在直线CA上, ∴E点坐标为(x,-x+3), ∴x=-x+3,解得:x=, ∴E点坐标为(,)。 |
据专家权威分析,试题“已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交..”主要考查你对 求二次函数的解析式及二次函数的应用,直角三角形的性质及判定 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用直角三角形的性质及判定
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |