如图,已知抛物线过点A(0,6),B(2,0),C(7,)。(1)求抛物线的解析式;(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;(3)在y轴-九年级数学

题文

如图,已知抛物线过点A(0,6),B(2,0),C(7,)。
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有,请求出所有符合条件的点P的坐标;若没有,请说明理由。

题型:解答题  难度:偏难

答案

解:(1)设抛物线解析式为
将A、B、C三点坐标代入,得
解得
∴抛物线解析式为
(2)证明:设直线AC的解析式为
将A、C两点坐标代入,得,解得
∴直线AC的解析式为

∴D(4,-2),E(4,4),
∵F与E关于D对称,
∴F(4,-8),
则直线AF的解析式为,CF的解析式为
∴直线AF,CF与x轴的交点坐标分别为(,0),(,0),
∵4--4,
∴两个交点关于抛物线对称轴x=4对称,
∴∠CFE=∠AFE;
(3)存在,设P(0,d),则由点P在点A下方,得AP=6-d ,AF=
FD=-2-(-8)=6,CF=
当△AFP∽△FDC时,,即,解得d=
当△AFP∽△FCD时,,即,解得d=-2,
∴P点坐标为(0,)或(0,-2)。

据专家权威分析,试题“如图,已知抛物线过点A(0,6),B(2,0),C(7,)。(1)求抛物线的解..”主要考查你对  求二次函数的解析式及二次函数的应用,轴对称,相似三角形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用轴对称相似三角形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐