如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标分别为A(-3,0)、C)(0,),且当x=-4和x=2时二次函数的函数值y相等。(1-九年级数学
题文
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标分别为A(-3,0)、C)(0,),且当x=-4和x=2时二次函数的函数值y相等。 |
(1)求实数a、b、c的值; (2)若点M、M同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMA沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B、N、Q为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由。 |
答案
解:(1)由题意,得,解之得; | |
(2)由(1)得, 当y=0时,x=-3或x=1, ∴B(1,0),A(-3,0),C(0,), ∴OA=3,OB=1,OC=, 易求AC=2,BC=2,AB=4, ∴△ABC为直角三角形,且∠ACB=90°,∠CAB=30°,∠ABC=60°, 又由BM=BN=PN=PM知四边形PMBN为菱形, ∴PN∥AB, ∴即, ∴, 过P作PE⊥AB于E,在Rt△PEM中,∠PME=∠B=60°,, ∴,, 又OM=BM-OB=,故OE=1, ∴; |
|
(3)由(1)、(2)知抛物线的对称轴为直线x=-1,且∠ACB=90°, ①若∠BQN=90°, ∵BN的中点到对称轴的距离大于1, 而, ∴以BN为直径的圆不与对称轴相交, ∴∠BQN≠90° 即此时不存在符合条件的Q点; ②若∠BNQ=90°, 当∠NBQ=60°,则Q、E重合,此时∠BNQ≠90°; 当∠NBQ=30°,则Q、P重合,此时∠BNQ≠90°, 即此时不存在符合条件的Q点; ③若∠QBN=90°,延长NM交对称轴于点Q,此时,Q为P关于x轴的对称点, ∴为所求。 |
据专家权威分析,试题“如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相..”主要考查你对 求二次函数的解析式及二次函数的应用,菱形,菱形的性质,菱形的判定,相似三角形的判定,解直角三角形 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用菱形,菱形的性质,菱形的判定相似三角形的判定解直角三角形
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |