已知抛物线(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点.并与-九年级数学


如果a<0,那么,当时,y有最大值,且y最大=
告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
点拨:
析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
∴抛物线的顶点为(4,-3)且过点(1,0)。
故可设函数解析式为y=a(x-4)2-3。
将(1,0)代入得0=a(1-4)2-3, 解得a=13.
∴y=13(x-4)2-3,即y=13x2-83x+73。
③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
例如:
(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
点拨:
解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

考点名称:平行四边形的性质

  • 平行四边形的概念:
    两组对边分别平行的四边形叫做平行四边形。
    平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
    ①平行四边形属于平面图形。
    ②平行四边形属于四边形。
    ③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
    ④平行四边形属于中心对称图形。

  • 平行四边形的性质:
    主要性质
    (矩形、菱形、正方形都是特殊的平行四边形。)
    (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
    (简述为“平行四边形的两组对边分别相等”)
    (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
    (简述为“平行四边形的两组对角分别相等”)
    (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
    (简述为“平行四边形的邻角互补”)
    (4)夹在两条平行线间的平行线段相等。
    (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
    (简述为“平行四边形的对角线互相平分”)
    (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
    (7)平行四边形的面积等于底和高的积。(可视为矩形)
    (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
    (9)平行四边形是中心对称图形,对称中心是两对角线的交点.
    (10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
    注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

    (11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
    (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
    (13)平行四边形对角线把平行四边形面积分成四等分。
    (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
    (15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

考点名称:正方形,正方形的性质,正方形的判定

  • 正方形的定义:
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    特殊的长方形。
    四条边都相等且四个角都是直角的四边形叫做正方形。
    有一组邻边相等的矩形是正方形。
    有一个角为直角的菱形是正方形。
    对角线平分且相等,并且对角线互相垂直的四边形为正方形。
    对角线相等的菱形是正方形。

  • 正方形的性质:
    1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
    2、内角:四个角都是90°;
    3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
    4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
    5、正方形具有平行四边形、菱形、矩形的一切性质;
    6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
    正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
    7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
    正方形外接圆面积大约是正方形面积的157%。
    8、正方形是特殊的长方形。

  • 正方形的判定:
    判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
    1:对角线相等的菱形是正方形。
    2:有一个角为直角的菱形是正方形。
    3:对角线互相垂直的矩形是正方形。
    4:一组邻边相等的矩形是正方形。
    5:一组邻边相等且有一个角是直角的平行四边形是正方形。
    6:对角线互相垂直且相等的平行四边形是正方形。
    7:对角线相等且互相垂直平分的四边形是正方形。
    8:一组邻边相等,有三个角是直角的四边形是正方形。
    9:既是菱形又是矩形的四边形是正方形。

    有关计算公式:
    若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
    正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
    正方形周长计算公式: C=4a 。
    S正方形=。(正方形边长为a,对角线长为b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐