(1)若a5=b7=c8,求2a+b+3c2a-b+3c的值.(2)已知二次函数图象与x轴交点(2,0),(-1,0),与y轴交点是(0,-1),求此二次函数解析式.-数学

  • 二次函数与一元二次方程的关系:
    函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
    那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
    1、从形式上看:
    二次函数:y=ax2+bx+c  (a≠0)
    一元二次方程:ax2+bx+c=0  (a≠0)
    2、从内容上看:
    二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
    3、相互关系:
    二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
    如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

  • 二次函数交点与二次方程根的关系:
    抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
    1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
    2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
    3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
    若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=

  • 点拨:
    ①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
    ②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
    ③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
    若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
    ④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。

  • 考点名称:比例的性质

    • 比例:
      在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。
      比例性质:
      比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
      在比例里,两个外项的积等于两个内项的积。a:b=c:d\leftrightarrow ad=bc,则有
      证明:




      2.分比性质:
      在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
      例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
      证明:




      3.合分比性质:
      在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
      例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
      证明:

      ,则




      4.等比性质:
      在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。
      例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
      证明:

      ,则
    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐