下图是某班学生在体检中测得每分钟心率频数的直方图,据此可知道该班参加体检学生的人数是()。-八年级数学

首页 > 考试 > 数学 > 初中数学 > 直方图/2019-12-17 / 加入收藏 / 阅读 [打印]

题文

下图是某班学生在体检中测得每分钟心率频数的直方图, 据此可知道该班参加体检学生的人数是(    )。

题型:填空题  难度:中档

答案

43

据专家权威分析,试题“下图是某班学生在体检中测得每分钟心率频数的直方图,据此可知道..”主要考查你对  直方图  等考点的理解。关于这些考点的“档案”如下:

直方图

考点名称:直方图

  • 频数分布直方图的定义:
    在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。
    相关概念:
    组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。
    组距:每一组两个端点的差。

  • 频数分布直方图的特点:
    ①能够显示各组频数分布的情况;
    ②易于显示各组之间频数的差别。

    作直方图的目的有:
    作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。
    1判断一批已加工完毕的产品;
    搜集有关数据。
    直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
    2在公路工程质量管理中,作直方图的目的有:
    ①估算可能出现的不合格率;
    ②考察工序能力估算法
    ③判断质量分布状态;
    ④判断施工能力;

  • 直方图绘制注意事项:
    a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。
    b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。
    c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。
    d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值 的位置(点画线表示)不能与公差中心M相混淆;图的右上角标出:N、S、C p或 CPK.

  • 制作频数分布直方图的方法:
    ①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。 我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。
    ②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。
    ③计算组距的宽度。用最大值和最小值之差去除组数,求出组距的宽度。
    ④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
    ⑤统计各组数据出现频数,作频数分布表。
    ⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。

    应用步骤:
    (1)收集数据。作直方图的数据一般应大于50个。
    (2)确定数据的极差(R)。用数据的最大值减去最小值 求得。
    (3)确定组距(h)。先确定直方图的组数,然后以此组数去除极差,可得直方图每组的宽度,即组距。组数的确定要适当。组数太少,会引起较大计算误差;组数太多,会影响数据分组规律的明显性,且计算工作量加大。
    (4)确定各组的界限值。为避免出现数据值与组界限值重合而造成频数据计算困难,组的界限值单位应取最小测量单位的1/2。分组时应把数据表中最大值和最小值包括在内。
    第一组下限值为:最小值-0.5;
    第一组上限值为:第一组下限值加组距;
    第二组下限值就是第一组的上限值;
    第二组上限值就是第二组的下限值加组距;
    第三组以后,依此类推定出各组的组界。
    (5)编制频数分布表。把多个组上下界限值分别填入频数分布表内,并把数据表中的各个数据列入相应的组,统计各组频数据(f )。
    (6)按数据值比例画出横坐标。
    (7)按频数值比例画纵坐标。以观测值数目或百分数表示。
    (8)画直方图。按纵坐标画出每个长方形的高度,它代表取落在此长方形中的数据数。(注意:每个长方形的宽度都是相等的。)在直方图上应标注出公差范围(T)、样本容量(n)、样本平均值(x)、样本标准偏差值(s)和x的位置等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐