下列关于统计图的描述错误的是[]A.折线图能反映数据的发展变化趋势B.条形图能显示各小组的具体数据C.扇形图便于反映各小组的频数D.频数分布直方图能反映各小组频数的分布情况-八年级数学

首页 > 考试 > 数学 > 初中数学 > 扇形图/2019-12-18 / 加入收藏 / 阅读 [打印]

题文

下列关于统计图的描述错误的是
[     ]
A.折线图能反映数据的发展变化趋势
B.条形图能显示各小组的具体数据
C.扇形图便于反映各小组的频数
D.频数分布直方图能反映各小组频数的分布情况
题型:单选题  难度:中档

答案

C

据专家权威分析,试题“下列关于统计图的描述错误的是[]A.折线图能反映数据的发展变化趋..”主要考查你对  扇形图,直方图,条形图,折线图  等考点的理解。关于这些考点的“档案”如下:

扇形图直方图条形图折线图

考点名称:扇形图

  • 定义
    用圆的面积代表事物总体,以扇形的面积和圆的面积的比值表示个项目占总体的百分数的统计图,叫做扇形统计图。

  • 特点:
    (1)用扇形的面积表示部分在总体中所占的百分比;
    (2)易于显示每组数据相对于总数的大小。

    作用:
    能清楚地了解各部分数与总数之间的关系与比例。

    扇形面积与其对应的圆心角的关系是:
    扇形面积越大,圆心角的度数越大。
    扇形面积越小,圆心角的度数越小。

    扇形所对圆心角的度数与百分比的关系是:
    圆心角的度数=百分比×360度
    扇形统计图还可以画成圆柱形的。

  • 制作扇形统计图的步骤:
    (1)根据统计资料,整理数据,并计算出部分占整体的百分数;
    (2)根据各部分占总体的百分数,计算出各部分扇形圆心角的度数;
    (3)取适当半径作圆,按圆心角将圆分成几个扇形;
    (4)对应标上各部分名称及占总体的百分数。

考点名称:直方图

  • 频数分布直方图的定义:
    在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。
    相关概念:
    组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。
    组距:每一组两个端点的差。

  • 频数分布直方图的特点:
    ①能够显示各组频数分布的情况;
    ②易于显示各组之间频数的差别。

    作直方图的目的有:
    作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。
    1判断一批已加工完毕的产品;
    搜集有关数据。
    直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
    2在公路工程质量管理中,作直方图的目的有:
    ①估算可能出现的不合格率;
    ②考察工序能力估算法
    ③判断质量分布状态;
    ④判断施工能力;

  • 直方图绘制注意事项:
    a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。
    b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。
    c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。
    d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值 的位置(点画线表示)不能与公差中心M相混淆;图的右上角标出:N、S、C p或 CPK.

  • 制作频数分布直方图的方法:
    ①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。 我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。
    ②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。
    ③计算组距的宽度。用最大值和最小值之差去除组数,求出组距的宽度。
    ④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
    ⑤统计各组数据出现频数,作频数分布表。
    ⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。

    应用步骤:
    (1)收集数据。作直方图的数据一般应大于50个。
    (2)确定数据的极差(R)。用数据的最大值减去最小值 求得。
    (3)确定组距(h)。先确定直方图的组数,然后以此组数去除极差,可得直方图每组的宽度,即组距。组数的确定要适当。组数太少,会引起较大计算误差;组数太多,会影响数据分组规律的明显性,且计算工作量加大。
    (4)确定各组的界限值。为避免出现数据值与组界限值重合而造成频数据计算困难,组的界限值单位应取最小测量单位的1/2。分组时应把数据表中最大值和最小值包括在内。
    第一组下限值为:最小值-0.5;
    第一组上限值为:第一组下限值加组距;
    第二组下限值就是第一组的上限值;
    第二组上限值就是第二组的下限值加组距;
    第三组以后,依此类推定出各组的组界。
    (5)编制频数分布表。把多个组上下界限值分别填入频数分布表内,并把数据表中的各个数据列入相应的组,统计各组频数据(f )。
    (6)按数据值比例画出横坐标。
    (7)按频数值比例画纵坐标。以观测值数目或百分数表示。
    (8)画直方图。按纵坐标画出每个长方形的高度,它代表取落在此长方形中的数据数。(注意:每个长方形的宽度都是相等的。)在直方图上应标注出公差范围(T)、样本容量(n)、样本平均值(x)、样本标准偏差值(s)和x的位置等。

考点名称:条形图

  • 条形图定义:
    用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。它可以表示出每个项目的具体数量。

  • 条形图特点:
    (1)能够显示每组中的具体数据;
    (2)易于比较数据之间的差别。

    描绘条形图的3要素:组数、组宽度、组限。
    1.组数
    把数据分成几组,指导性的经验是将数据分成5~10组。
    2.组宽度
    通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:
    近似组宽度=(最大值-最小值)/组数
    然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。
    3.组限
    分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。
    绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。

    使用条形图的情况:
    轴标签过长;
    显示的数值是持续型的。

  • 条形图具有下列图表子类型:
    簇状条形图和三维簇状条形图  簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    堆积条形图和三维堆积条形图  堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    百分比堆积条形图和三维百分比堆积条形图  此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。

    水平圆柱图、圆锥图和棱锥图  水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐