某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图),由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40%,64%,已知第一-九年级数学

首页 > 考试 > 数学 > 初中数学 > 扇形图/2019-12-18 / 加入收藏 / 阅读 [打印]

题文

某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图),由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元。

(1)一月份销售收入为____万元,二月份销售收入为____万元,三月份销售收入为____万元;
(2)二月份男、女服装的销售收入分别是多少万元?
题型:解答题  难度:中档

答案

解:(1)5,6,9;
(2)设二月份男、女服装的销售收入分别为x万元、y万元,根据题意,得
,解之,得
答:二月份男、女服装的销售收入分别为3.5万元、2.5万元。

据专家权威分析,试题“某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘..”主要考查你对  扇形图,二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:

扇形图二元一次方程组的应用

考点名称:扇形图

  • 定义
    用圆的面积代表事物总体,以扇形的面积和圆的面积的比值表示个项目占总体的百分数的统计图,叫做扇形统计图。

  • 特点:
    (1)用扇形的面积表示部分在总体中所占的百分比;
    (2)易于显示每组数据相对于总数的大小。

    作用:
    能清楚地了解各部分数与总数之间的关系与比例。

    扇形面积与其对应的圆心角的关系是:
    扇形面积越大,圆心角的度数越大。
    扇形面积越小,圆心角的度数越小。

    扇形所对圆心角的度数与百分比的关系是:
    圆心角的度数=百分比×360度
    扇形统计图还可以画成圆柱形的。

  • 制作扇形统计图的步骤:
    (1)根据统计资料,整理数据,并计算出部分占整体的百分数;
    (2)根据各部分占总体的百分数,计算出各部分扇形圆心角的度数;
    (3)取适当半径作圆,按圆心角将圆分成几个扇形;
    (4)对应标上各部分名称及占总体的百分数。

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐