某校对中考前一次数学模拟考试进行抽样分析,把样本成绩按分数段分成A、B、C、D、E五组(每组成绩含最低分,不含最高分)进行统计,并将结果绘制成下面两幅统计图,请根据图中-九年级数学

首页 > 考试 > 数学 > 初中数学 > 扇形图/2019-12-18 / 加入收藏 / 阅读 [打印]


7、作用不同
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

  • 考点名称:条形图

    • 条形图定义:
      用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。它可以表示出每个项目的具体数量。

    • 条形图特点:
      (1)能够显示每组中的具体数据;
      (2)易于比较数据之间的差别。

      描绘条形图的3要素:组数、组宽度、组限。
      1.组数
      把数据分成几组,指导性的经验是将数据分成5~10组。
      2.组宽度
      通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:
      近似组宽度=(最大值-最小值)/组数
      然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。
      3.组限
      分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。
      绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。

      使用条形图的情况:
      轴标签过长;
      显示的数值是持续型的。

    • 条形图具有下列图表子类型:
      簇状条形图和三维簇状条形图  簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。

      堆积条形图和三维堆积条形图  堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。

      百分比堆积条形图和三维百分比堆积条形图  此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。

      水平圆柱图、圆锥图和棱锥图  水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。

    • 制作条形图的步骤:
      (1)根据统计资料整理数据,一般整理成表格形式;
      (2)画出横轴、纵轴,确定它们所表示的项目,选定标尺,按一定比例作为长度单位,长短要适中,根据数据的大小对应标出;
      (3)画直条,条形的高与数据的大小成比例。条形的宽度、间隔要一致;
      (4)写上统计总标题、制图日期及数量单位。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐