根据潍坊市2006年第一季度劳动力市场职业供求状况分析,其中10个职业(职业小类)的需求人数(百人)和求职人数(百人)的数据表格如下:(1)写出求职人数(百人)的中位数;(2)仿照上-九年级数学

首页 > 考试 > 数学 > 初中数学 > 折线图/2019-12-18 / 加入收藏 / 阅读 [打印]

众  数:是一组数据中的原数据 ,它是真实存在的。

5、代表不同
平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

6、特点不同
平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。

7、作用不同
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐