如图所示,A、B两个旅游点从2007年至2011年的游客人数变化情况分别用实线和虚线表示。根据图中所示解答以下问题:(1)B旅游点的游客人数相对于上一年,增长最快的是哪一年?(2)-九年级数学
题文
如图所示,A、B两个旅游点从2007年至2011年的游客人数变化情况分别用实线和虚线表示。根据图中所示解答以下问题: (1)B旅游点的游客人数相对于上一年,增长最快的是哪一年? (2)求A、B两个旅游点从2007 年到2011 年游客人数的方差,并从方差的角度,用一句话对这两个旅游点的情况进行评价; (3)A旅游点现在的门票价格为每人80元,为保护旅游点的环境和游客的安全,A 旅游点的最佳接待人数为 4万人,为控制游客数量,A旅游点决定提高门票价格。已知门票价格 x(元)与游客人数y(万人)满足函数关系。若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元? |
答案
解:(1)B旅游点的游客人数相对于上一年,增长最快的是2010年。 (2) 从2007年到2011年,A、B两个旅游点平均每年的游客人数均为 3万人,但A旅游点的游客人数比 B旅游点的游客人数波动大。 (3)由题意,得解得x≥100,x-80≥100-80=20。故A旅游点的门票价格至少应提高20元。 |
据专家权威分析,试题“如图所示,A、B两个旅游点从2007年至2011年的游客人数变化情况分..”主要考查你对 折线图,求一次函数的解析式及一次函数的应用,平均数,方差 等考点的理解。关于这些考点的“档案”如下:
折线图求一次函数的解析式及一次函数的应用平均数方差
考点名称:折线图
- 定义:
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段把各点顺次连接起来。
折线统计图不但可以表示项目的具体数量,又能清楚地反映事物变化的情况。 - 折线图特点:
易于显示数据的变化的规律和趋势。可以用来作股市的跌涨和统计气温。
折线图具有下列图表子类型:
折线图和带数据标记的折线图 折线图用于显示随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。
在有很多数据点并且它们的显示顺序很重要时,折线图尤其有用。如果有很多类别或者数值是近似的,则应该使用不带数据标记的折线图。 - 几种折线图区别:
堆积折线图和带数据标记的堆积折线图:
堆积折线图用于显示每一数值所占大小随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。如果有很多类别或者数值是近似的,则应该使用无数据点堆积折线图。
提示:为更好地显示此类型的数据,您可能要考虑改用堆积面积图。
百分比堆积折线图和带数据标记的百分比堆积折线图:
百分比堆积折线图用于显示每一数值所占百分比随时间或有序类别而变化的趋势。
三维折线图:三维折线图将每一行或列的数据显示为三维标记。
三维折线图具有可修改的水平轴、垂直轴和深度轴。 - 制作折线图的步骤:
(1)根据统计资料整理数据;
(2)作平面直角坐标系,横轴、纵轴都标上单位长度,取长适当;一般横轴表示时间(或先后次数),纵轴表示时间序列数据;
(3)根据数据描点。并按先后顺序将点用折线连接起来。 - 折线图制作技巧:
1.“字体”的处理
建议:取消图表的字体“自动缩放”功能,这样可防止在变动图表大小时,图表项的字体发生不必要的改变。
取消所有图表项的“自动缩放”功能,要取消所有图表项的字体“自动缩放”功能,取消图表区的“字体缩放“功能即可。可通过双击图表区,并调出“图表区格式”对话框,切换到“字体”选项卡,取消“自动缩放”前面的复选框的选择,这样便是取消了所有图表项的字体缩放功能,然后分别对各图表项的字体按需要设定字体大小。
2.“网格线”的处理
使用“折线图”或“散点图”时,尤其要注意淡化网格线对数据系列的影响,可取消网格线或是将其设为虚线,并改为浅色。
3. 数据系列格式的设置
一般不使用默认的格式设置,根据自己的需求改变“线形“或是“数据标记”及“填充”。
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |