德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=n(n+1)2.这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:在“平方公式”(a+b)2=a2+2ab+b2中,取b=1,-数学
题文
德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=
这个公式可以用一种叫做“交叉消项求和法”的方法推导如下: 在“平方公式”(a+b)2=a2+2ab+b2中, 取b=1,得2a+1=(a+1)2-a2.…(*) 在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n. 即1+2+3+…+n=
|
答案
在立方公式中,取b=1得(a+1)3-a3=3a2+3a+1, 依次取a=1,2,3,…,n-1,n得 23-1=3×12+3×1+1,33-23=3×22+3×2+1,43-33=3×32+3×3+1,…(n+1)3-n3=3×n2+3n+1, 将以上n个式子相加,得(n+1)3-1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n, ∴12+22+32+…+n2=
|
据专家权威分析,试题“德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n..”主要考查你对 有理数的乘除混合运算 等考点的理解。关于这些考点的“档案”如下:
有理数的乘除混合运算
考点名称:有理数的乘除混合运算
- 有理数的乘除混合运算:
可统一化为乘法运算,在进行乘除运算时,一般地,遇除化乘,转化为有理数的乘法进行计算。 - 乘除混合运算需要掌握:
1.由负因数的个数确定符号;
2.小数化成分数,带分数化成假分数;
3.除号改成称号,除号改成倒数,变成连乘形式;
4.进行约分;
5.注意运算顺序,乘除为同级运算,要遵守从左到右的顺序计算;
6.转化为乘法后,可运用乘法运算律简化运算。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |