将编号为1,2,3,4,5的五个小球放入编号为1,2,3,4,5的五个盒子中,每个盒子只放入一个,①一共有多少种不同的放法?②若编号为1的球恰好放在了1号盒子中,共有多少种不同-数学
题文
将编号为1,2,3,4,5的五个小球放入编号为1,2,3,4,5的五个盒子中,每个盒子只放入一个, ①一共有多少种不同的放法? ②若编号为1的球恰好放在了1号盒子中,共有多少种不同的放法? ③若至少有一个球放入了同号的盒子中(即对号放入),共有多少种不同的放法? |
答案
①将第一个球先放入,有5种不同的方法,再放第二个球,这时以4种不同的放法,依此类推,放入第三、四、五个球,分别有3、2、1种放法,所以总共有5×4×3×2×1=120种不同的放法. ②将1号球放在1号盒子中,其余的四个球随意放,它们依次有4、3、2、1种不同的放法,这样共有4×3×2×1=24种不同的放法. ③(解法一) 在这120种放法中,排除掉全部不对号的放法,剩下的就是至少有一个球放入了同号的盒子中的放法种数. 为研究全部不对号的放法种数的计算法,设A1为只有一个球放入一个盒子,且不对号的放法种数,显然A1=0,A2为只有二个球放入二个盒子,且不对号的放法种数,∴A2=1,A3为只有三个球放入三个盒子,且都不对号的放法种数,A3=2,An为有n个球放入n个盒子,且都不对号的放法种数. 下面我们研究An+1的计算方法,考虑它与An及An-1的关系, 如果现在有n个球已经按全部不对号的方法放好,种数为An.取其中的任意一种,将第n+1个球和第n+1个盒子拿来,将前面n个盒子中的任一盒子(如第m个盒子)中的球(肯定不是编号为m的球)放入第n+1个盒子,将第n+1个球放入刚才空出来的盒子,这样的放法都是合理的.共有nAn种不同的放法. 但是,在刚才的操作中,忽略了编号为m的球放入第n+1个盒子中的情况,即还有这样一种情况,编号为m的球放入第n+1个盒子中,且编号为n+1的球放入第m个盒子中,其余的n-1个球也都不对号.于是又有了nAn-1种情况是合理的. 综上所述得An+1=nAn+nAn-1=n(An+An-1). 由A1=0,A2=1,得A3=2(1+0)=2,A4=3(2+1)=9,A5=4(9+2)=44. 所以至少有一个球放入了同号的盒子中的放法种数为全部放法的种数减去五个球都不对号的放法种数,即120-44=76种. (解法二) 从五个球中选定一个球,有5种选法,将它放入同号的盒子中(如将1号球放入1号盒子),其余的四个球随意放,有24种放法,这样共有5×24=120种放法. 但这些放法中有许多种放法是重复的,如将两个球放入同号的盒子中(例如1号球和2号球分别放入1号盒子、2号盒子中)的放法就计算了两次,这样从总数中应减去两个球放入同号的盒子中的情况,得120-C52P33=120-60(种). 很明显,这样的计算中,又使得将三个球放入同号的盒子中(例如1号球、2号球和3号球分别放入1号盒子、2号盒子和3号盒子中)的放法少计算了一次,于是前面的式子中又要加入C53P22=20种, 再计算四个球、五个球放入同号盒子的情况,于是再减去四个球放入同号盒子中的情况C54P11,最后加上五个球放入同号中的情况C55. 整个式子为120-C52P33+C53P22-C54P11+C55=120-60+20-5+1=76(种). |
据专家权威分析,试题“将编号为1,2,3,4,5的五个小球放入编号为1,2,3,4,5的五个..”主要考查你对 逻辑推理 等考点的理解。关于这些考点的“档案”如下:
逻辑推理
考点名称:逻辑推理
定义:
把不同排列顺序的意识进行相关性的推导就是逻辑推理。简而言之可以理解为宇宙中任意基本“原件”的排列组合得出的现象或概念,属于唯心主义范畴。假如存在不同的感知系统,对于“同一组基本原件”在特定时空的排列组合方式所呈现的现象或概念,可以得出不同的逻辑推理方式。基本依据:
当对一个命题的正确性进行判断时,一个东西不能同时是什么又不是什么,不可能同时是甲又是乙,如果出现这种情况,就说明在逻辑上是矛盾的。
一般解法:
从某一个条件出发,根据其他条件进行正确推理,如果最后得到的结论满足全部条件而不出现矛盾,这就是所要求的方案;如果得到相互矛盾的结果,就必须改换其他条件重新开始,知道得出满足条件的方案为止。- 逻辑中有三种逻辑推理的方式:
演绎、归纳和溯因。给定前提、结论和规则,而前提导致结论,则可分别解释如下:
演绎用来决定结论 。它使用规则和前提来推导出结论 。数学家通常使用这种推理。
举例:"若下雨,则草地会变湿。因为今天下雨了,所以今天草地是湿的。"。
归纳用来决定规则 。它借由大量的前提和结论所组成的例子来学习规则 。科学家通常使用这种推理。
举例:"每次下雨,草地都是湿的。因此若明天下雨,草地就会变湿。"。
溯因用来决定前提 。它借由结论和规则来支援前提以解释结论 。诊断和侦探通常使用这种推理。
举例:"若下雨,草地会变湿。因为草地是湿的,所以曾下过雨。" - 6大逻辑推理技巧:
1. 计算推导:
计算推导是逻辑推理过程中最基本的方法。我们每个人从小学开始就学会做计算了,但是对于计算的用处究竟有多大,能够透露出多少隐藏在问题背后的信息,就不是人人都清楚的了。
事实上,计算和其他推理技巧一样,都是我们进行逻辑推理时最基本、最可靠的工具,特别是在运用代数的方法来解决问题时,它往往能暴露问题的本质,使我们得出充足、可靠的结论。但是要注意:计算推导一定要完备,不能漏掉任何一种情况,哪怕这种情况的出现是如此的不正常。
2. 演绎推理:
演绎是一种由一般到个别的推理方法。在演绎推理过程中,前提和结论之间的联系是必然的,结论不能超出前提所断定的范围。
对于一个正确的演绎推理过程,如果其前提是真的,则所得到的结论也一定是真的,这是演绎推理的一个重要特征。
演绎推理中有一种特殊的方法,称为递推。所谓递推,就是利用研究对象之间的联系,用前一步的结论去推导下一步的结论,以达到简化问题的目的。递推是一种非常有效的思考方法,它有点像多米诺骨牌,推倒第一块以后,后面的骨牌就会依次倒下。如果能够熟练运用递推技巧,你会发现,许多看上去很难的题目也可以轻松地找到答案。
3.归纳分类:
归纳是一种由个别到一般的推理方法。与演绎推理不同,归纳推理得出的结论不一定绝对正确,所以有时我们称它具有或然性。但归纳推理中有一种特殊的完全归纳推理,应用完全归纳推理时,只要我们考察了该类事物的全部对象,那么结论就必然是完全真实的。
在进行归纳推理时,一个很重要的技巧就是要对它们进行分类,把它们分成若干个小组,然后分别进行分析。分类可以使每一部分的研究对象都比原来的问题更简单,相互之间的关系更清晰。
4.反向思考:
反向思考是解决逻辑推理问题的一种特殊方法。任何一个问题都有正反两个方面。所谓正难则反,很多时候,从正面解决问题相当困难,这时如果从其反面去想一想,常常会茅塞顿开,获得意外的成功。这就是反向思考。
在进行逻辑推理时,有时已知的条件很多,能够运用的逻辑关系也很复杂,要从众多的可能性中寻找所需要的结果,往往是非常困难的。这时,我们可以运用反向思考方法,从结果出发,排除掉一些不可能的情况,使剩下的情况减少,便于我们最后的分析。如果情况减少到一定程度,我们甚至可以用穷举的方法,依次考察所有情况,从而找到问题的答案。
5. 图表分析:
在逻辑思考过程中有这样一些问题,所涉及或所列出的事物情况比较多,而且又具有一定的表列特征,这时候如果我们把它转化成一个直观易读的图形或者表格,就会非常容易地迅速寻找到答案。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂-数学
下一篇:从2001~2011这11个整数中,选3个数使他们的和能被3整除,则不同的选数法共有______种.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |