下列说法中正确的是[]A.过点P画线段AB的垂线B.P是直线外一点,Q是直线上一点,连接PQ,PQ⊥ABC.过一点有且只有一条直线平行于已知直线D.线段AB就是表示A,B两点间的距离-七年级数学
题文
下列说法中正确的是 |
[ ] |
A.过点P画线段AB的垂线 B.P是直线外一点,Q是直线上一点,连接PQ,PQ⊥AB C.过一点有且只有一条直线平行于已知直线 D.线段AB就是表示A,B两点间的距离 |
答案
A |
据专家权威分析,试题“下列说法中正确的是[]A.过点P画线段AB的垂线B.P是直线外一点,Q是..”主要考查你对 直线,线段,射线,平行线的性质,平行线的公理,垂直的判定与性质 等考点的理解。关于这些考点的“档案”如下:
直线,线段,射线平行线的性质,平行线的公理垂直的判定与性质
考点名称:直线,线段,射线
- 基本概念:
直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
注意:
①线和射线无长度,线段有长度。
②直线无端点,射线有一个端点,线段有两个端点。 直线、射线、线段的基本性质:
图形 表示法 端点 延长线 能否度量 基本性质 直线 没有端点的一条线 一条线,
不要端点无 可以向两边无限延长 否 两端都没有端点,可以无限延长,不可测量的线 射线 只有一个端点的一条线 一条线,
只有一边有端点一个 可以向一边无限延长 否 一端有端点,可以向一边无限延长,不可测量的线 线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 能 两端都有端点,不能延长,可测量的线 - 直线、射线、线段区别:
直线没有端点,2边可无限延长;
射线有1端有端点,另一端可无限延长;
线段,有2个端点,而2个端点间的距离就是这条线段的长度。
直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。 - 各种图形表示方法:
直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
例:直线l;直线AB。
射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
例:射线AB。
线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
例:线段AB;线段a 。
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
考点名称:垂直的判定与性质
- 垂线的定义:
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
垂直的判定:垂线的定义。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,线段的条数一共是[]A.3条B.4条C.5条D.6条-七年级数学
下一篇:已知线段AB=18cm,点E、C、D在线段AB上,且CB=4cm,点E是AB的中点,点D是CB的中点,求线段ED的长度.-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |