下列说法正确的是()A.两点之间直线最短B.连接两点间的线段叫做两点间的距离C.经过直线外一点有且只有一条直线与已知直线平行D.如果两个角互补,那么这两个角中,一个是锐角,-数学

题文

下列说法正确的是(  )
A.两点之间直线最短
B.连接两点间的线段叫做两点间的距离
C.经过直线外一点有且只有一条直线与已知直线平行
D.如果两个角互补,那么这两个角中,一个是锐角,一个是钝角
题型:单选题  难度:偏易

答案

A、直线是无限长的,不能度量长度.故错误;
B、线段是图形,距离是数字,不能说线段是距离.故错误;
C、正确;
D、两个角互补,还有可能这两个角都是直角.故错误.
故选C.

据专家权威分析,试题“下列说法正确的是()A.两点之间直线最短B.连接两点间的线段叫做两..”主要考查你对  直线,线段,射线,余角,补角  等考点的理解。关于这些考点的“档案”如下:

直线,线段,射线余角,补角

考点名称:直线,线段,射线

  • 基本概念:
    直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
    线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
    射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
    注意:
    ①线和射线无长度,线段有长度。
    ②直线无端点,射线有一个端点,线段有两个端点。

  • 直线、射线、线段的基本性质:

    图形 表示法 端点 延长线 能否度量 基本性质
    直线 没有端点的一条线 一条线,
    不要端点
    可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
    射线 只有一个端点的一条线 一条线,
    只有一边有端点
    一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
    线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

  • 直线、射线、线段区别:
    直线没有端点,2边可无限延长;
    射线有1端有端点,另一端可无限延长;
    线段,有2个端点,而2个端点间的距离就是这条线段的长度。

    直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
    射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
    线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。

  • 各种图形表示方法:
    直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
    例:直线l;直线AB。
    射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
    例:射线AB。
    线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
    例:线段AB;线段a 。

考点名称:余角,补角

  • 余角:
    如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
    ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
    补角:
    如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
    ∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A

  • 补角的性质:
    同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
    等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
    余角的性质:
    同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
    等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B
    注意:
    ①钝角没有余角;
    ②互为余角、补角是两个角之间的关系。如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;
    ③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90°或180°,就一定互为余角或补角。

  • 余角与补角概念认识提示:
    (1)定义中的“互为”一词如何理解?
    如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1。
    (2)互余、互补的两角是否一定有公共顶点或公共边?
    两角互余或互补,只与角的度数有关,与位置无关。
    (3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3 互余(互补)吗?
    不能,互余或互补是两个角之间的数量关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐