下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的-数学

题文

下列说法中正确的有(  )
①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.
④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.
⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.
A.0个B.1个C.2个D.3个
题型:单选题  难度:中档

答案

①只有两直线平行,同位角才相等,故本小题错误;
②凡直角都相等,正确;
③根据定义,一个角的余角比补角小90°,所以一个角的余角一定比它的补角小,正确;
④在直线、射线和线段中,只有线段有长短,直线是向两方无限延伸的,没有长度,故本小题错误;
⑤两点之间的线段的长度就是这两点间的距离,正确;
⑥如果一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故本小题错误;
所以,正确的有②③⑤共3个.
故选D.

据专家权威分析,试题“下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一..”主要考查你对  直线,线段,射线,角的概念 ,余角,补角,对顶角,同位角,内错角,同旁内角,平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

直线,线段,射线角的概念 余角,补角对顶角,同位角,内错角,同旁内角平行线的性质,平行线的公理

考点名称:直线,线段,射线

  • 基本概念:
    直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
    线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
    射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
    注意:
    ①线和射线无长度,线段有长度。
    ②直线无端点,射线有一个端点,线段有两个端点。

  • 直线、射线、线段的基本性质:

    图形 表示法 端点 延长线 能否度量 基本性质
    直线 没有端点的一条线 一条线,
    不要端点
    可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
    射线 只有一个端点的一条线 一条线,
    只有一边有端点
    一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
    线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

  • 直线、射线、线段区别:
    直线没有端点,2边可无限延长;
    射线有1端有端点,另一端可无限延长;
    线段,有2个端点,而2个端点间的距离就是这条线段的长度。

    直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
    射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
    线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。

  • 各种图形表示方法:
    直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
    例:直线l;直线AB。
    射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
    例:射线AB。
    线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
    例:线段AB;线段a 。

考点名称:角的概念

  • 角的基本概念:
    从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
    从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
    ①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
    ②角的大小可以度量,可以比较。
    ③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。

  • 角的分类
    根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    平角:180的角,当角的两边在一条直线上时,组成的角叫做平角。即射线OA绕点O旋转,当终边在始边OA的反向延长线上时所成的角;
    直角:90的角,即线OA绕点O旋转,当终边与始边垂直时所成的角,平角的一半叫做直角;
    锐角:大于0小于90的角,小于直角的角叫做锐角;
    钝角:大于90小于180的角,大于直角且小于平角的角叫做钝角。
    周角:360的角,即射线OA绕点O旋转,当终边与始边重合时所成的角。

    角的性质:
    ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;
    ②角的大小可以度量,可以比较;
    ③角可以参与运算。

    角的度量:
    角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“。”,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”。1°=60′=3600″。

考点名称:余角,补角

  • 余角:
    如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
    ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
    补角:
    如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
    ∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐