如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,有下列说法:①点A与点B的距离是线段AB的长;②点A到直线CD的距离是线段AD的长;③线段CD是△ABC边AB上的高;④线段CD是△BCD边BD上的-数学

分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

 

角平分线线定理:
定理1:在角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
注:定理2的逆命题也成立。
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

 

垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。  
2.垂直平分线上任意一点,到线段两端点的距离相等。  
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  • <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />垂直平分线的尺规作法:
    方法一:
    1、取线段的中点。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
    3、连接这两个交点。
    原理:等腰三角形的高垂直等分底边。
    方法二:
    1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
    2、连接这两个交点。原理:两点成一线。
    垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐