下列命题中,假命题的个数有()(1)无限小数是无理数;(2)式子a是二次根式;(3)三点确定一条直线;(4)多边形的边数越多,内角和越大.A.1个B.2个C.3个D.4个-数学

题文

下列命题中,假命题的个数有(  )
(1)无限小数是无理数;  (2)式子

a
是二次根式;
(3)三点确定一条直线;  (4)多边形的边数越多,内角和越大.
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

①无限不循环小数叫做无理数.如0.
?
3
是无限小数,但它是有理数.故是假命题;
②一般地,我们把形如

a
(a≥0)的式子叫做二次根式.如

-2
无意义,它不是二次根式.故是假命题;
③由直线的性质公理:经过两点有且只有一条直线,即两点确定一条直线可知,当三点不在同一直线上时,经过这三点不能画直线.故是假命题;
④由n边形的内角和定理可知,边数每增加1,内角和增加180°,所以多边形的边数越多,内角和越大.
故是真命题.
综上,可知假命题一共有3个.
故选C.

据专家权威分析,试题“下列命题中,假命题的个数有()(1)无限小数是无理数;(2)式子a是二..”主要考查你对  直线,线段,射线,多边形 ,命题,定理  等考点的理解。关于这些考点的“档案”如下:

直线,线段,射线多边形 命题,定理

考点名称:直线,线段,射线

  • 基本概念:
    直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
    线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
    射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
    注意:
    ①线和射线无长度,线段有长度。
    ②直线无端点,射线有一个端点,线段有两个端点。

  • 直线、射线、线段的基本性质:

    图形 表示法 端点 延长线 能否度量 基本性质
    直线 没有端点的一条线 一条线,
    不要端点
    可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
    射线 只有一个端点的一条线 一条线,
    只有一边有端点
    一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
    线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

  • 直线、射线、线段区别:
    直线没有端点,2边可无限延长;
    射线有1端有端点,另一端可无限延长;
    线段,有2个端点,而2个端点间的距离就是这条线段的长度。

    直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
    射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
    线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。

  • 各种图形表示方法:
    直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
    例:直线l;直线AB。
    射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
    例:射线AB。
    线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
    例:线段AB;线段a 。

考点名称:多边形

  • 定义:
    在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。如果一个图形有n条线段组成,那么这个多边形就叫做n边形,如四边形、五边形、六边形等。
    多边形的内角:相邻两边组成的角叫做多边形的内角。
    多边形的对角线:连结多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  • 多边形构成要素:
    组成多边形的线段至少有3条,三角形是最简单的多边形。
    组成多边形的每一条线段叫做多边形的边;
    相邻的两条线段的公共端点叫做多边形的顶点;
    多边形相邻两边所成的角叫做多边形的内角;
    连接多边形的两个不相邻顶点的线段叫做多边形的对角线。
    多边形内角的一边与另一边反向延长线所组成的角叫做多边形的外角。

    多边形分类:
    在多边形的每一个定点处取这个多边形的一个外角,它们的和叫做多边形的外角和。
    多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
    多边形也可以分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形
    (此定理只适用于凸多边形,即平面多边形,空间多边形不适用)广义的多边形也包括五角星等图形。

  • 多边形定理:
    1、内角和定理:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐