(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①1-2____2-1,②2-3____3-2,③3-4____4-3,④4-5____5-4,……(2)由(1)可以猜测n-(n+1)与(n+1)-n(n为正整数)的大-七年级数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)
①1-2____2-1,②2-3____3-2,③3-4____4-3, ④4-5____5-4,……
(2)由(1)可以猜测n-(n+1)与(n+1)-n(n为正整数)的大小关系:
当n____时,n-(n+1)>(n+1)-n;当n_____时,n-(n+1)<(n+1)-n
题型:填空题  难度:中档

答案

(1)①>;②>;③<;④<;(2)

据专家权威分析,试题“(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”..”主要考查你对  有理数的乘方,比较有理数的大小  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方比较有理数的大小

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:比较有理数的大小

  • 比较有理数大小的方法:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
    数轴法:
    1、在数轴上表示的两个数,右边的总比左边的数大。
    2、正数都大于零,负数都小于零,正数大于负数。

    绝对值法:
    1、两个正数比较大小,绝对值大的数大;
    2、两个负数比较大小,绝对值大的数反而小。

    差值法:
    设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a<b
    商值比较法:
    设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a<b