化简求值:(1)已知|a+12|+(b-3)2=0,求代数式[(2a+b)2+(2a+b)(b-2a)-6b]÷2b的值.(2)已知x+y=a,x2+y2=b,求4x2y2.(3)计算:(2+1)(22+1)(24+1)…(2128+1)+1.-数学
题文
化简求值: (1)已知|a+
(2)已知x+y=a,x2+y2=b,求4x2y2. (3)计算:(2+1)(22+1)(24+1)…(2128+1)+1. |
答案
(1)∵|a+
∴a+
∴a=-
[(2a+b)2+(2a+b)(b-2a)-6b]÷2b, =(4a2+b2+4ab+b2-4a2-6b)÷2b, =b+2a-3, 把a=-
原式=b+2a-3=3+2×(-
(2)∵(x+y)2=x2+y2+2xy, ∴a2=b+2xy, ∴xy=
∴4x2y2=(2xy)2=(a2-b)2=a4-2a2b+b2, xy=
(3)(2-1)(2+1)(22+1)(24+1)(2128+1)+1=(2128)2-1+1=2256. |
据专家权威分析,试题“化简求值:(1)已知|a+12|+(b-3)2=0,求代数式[(2a+b)2+(2a+b)(b-2..”主要考查你对 有理数的乘方,平方差公式 等考点的理解。关于这些考点的“档案”如下:
有理数的乘方平方差公式
考点名称:有理数的乘方
- 有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。 - 乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。 - 有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。 - 乘方示意图:
考点名称:平方差公式
- 表达式:
(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。 - 特点:
(1)左边是两项式相乘,一项完全相同,另一项互为相反数;
(2)右边是乘方中两项的平方差。
注:
(1)公式中的a和b可以是具体的数也可以是单项式或多项式;
(2)不能直接应用公式的,要善于转化变形,运用公式。 常见错误:
平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。注意事项:
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
上一篇:计算:x2?x3=______;4a2b÷2ab=______.-数学
下一篇:下列运算中,正确的是()A.a3?a2=a6B.(-3a)3=-9a3C.2a+7a=3aD.22a-12a=322a-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |