下列等式恒成立的是()A.(-x)4?(-x)3=x7B.(4x2)2÷(2x)2=4x2C.3x2+2x3=5x5D.(xn+1)2=x2n+1-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

下列等式恒成立的是(  )
A.(-x)4?(-x)3=x7B.(4x22÷(2x)2=4x2
C.3x2+2x3=5x5D.(xn+12=x2n+1
题型:单选题  难度:偏易

答案

A、应为(-x)4?(-x)3=(-x)7=-x7,故本选项错误;
B、(4x22÷(2x)2=16x4÷4x2=4x2,正确;
C、3x2与2x3不是同类项,不能合并,故本选项错误;
D、应为(xn+12=x2n+2,故本选项错误.
故选B.

据专家权威分析,试题“下列等式恒成立的是()A.(-x)4?(-x)3=x7B.(4x2)2÷(2x)2=4x2C.3x2+..”主要考查你对  有理数的乘方,整式的除法  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方整式的除法

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:整式的除法

  • 整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。

  • 整式的除法法则:
    1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
    数学符号表示: (a≠0,m、n为正整数,并且m>n)
    2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
    3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  • 整式的除法运算:
    单项式÷单项式
    单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
    注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
    说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
    单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。