(22)-2,(-2)2008,与20的大小关系是()A.(22)-2>20>(-2)2008B.(-2)2008>(22)-2>20C.20>(-2)2008>(22)-2D.20>(22)-2>(-2)2008-数学
题文
(
|
答案
∵(
又22008>2>1, ∴(-2)2008>(
故选B. |
据专家权威分析,试题“(22)-2,(-2)2008,与20的大小关系是()A.(22)-2>20>(-2)2008B.(-..”主要考查你对 有理数的乘方,实数的比较大小,零指数幂(负指数幂和指数为1) 等考点的理解。关于这些考点的“档案”如下:
有理数的乘方实数的比较大小零指数幂(负指数幂和指数为1)
考点名称:有理数的乘方
- 有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。 - 乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。 - 有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。 - 乘方示意图:
考点名称:实数的比较大小
- 实数的比较大小法则:
正实数都大于0,负实数都小于0;
正实数大于一切负实数,两个负实数绝对值大的反而小;
在数轴上,右边的数要比左边的大。 - 实数比较大小的具体方法:
(1)求差法:
设a,b为任意两个实数,先求出a与b的差,再根据
“当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
(2)求商法:
设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
“当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
当a,b(b≠0)为任意两个负实数时,再根据
“当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:下列运算中正确的是()A.a2?(a3)2=a8B.a3?a3=2a3C.a3+a3=2a6D.(a2)3=a8-数学
下一篇:x,y为任意实数,M=4x2+9y2+12xy+8x+12y+3,则M的最小值为()A.-2B.-1C.0D.3-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |