若有理数x,y,z满足x+y-1+z-2=12(x+y+z),则(x-yz)3的值为______.-数学
题文
若有理数x,y,z满足
|
答案
将题中等式移项并将等号两边同乘以2得:x-2
配方得 (x-2
∴(
∴
解得 x=1,y=2,z=3, ∴(x-yz)2=(1-2×3)3=-125. 故答案为:-125. |
据专家权威分析,试题“若有理数x,y,z满足x+y-1+z-2=12(x+y+z),则(x-yz)3的值为_____..”主要考查你对 有理数的乘方,最简二次根式 等考点的理解。关于这些考点的“档案”如下:
有理数的乘方最简二次根式
考点名称:有理数的乘方
- 有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。 - 乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。 - 有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。 - 乘方示意图:
考点名称:最简二次根式
最简二次根式定义:
被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。- 最简二次根式同时满足下列三个条件:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含有能开的尽的因式;
(3)被开方数不含分母。 - 最简二次根式判定:
①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。
化二次根式为最简二次根式的方法和步骤:
①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:设a,b是非零有理数,且(a+b)2=0,则a2+2b23ab的值为()A.13B.3C.1D.-1-数学
下一篇:(1)已知am=2,an=3,求a3m+2n的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x14.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |