已知(x2-1)2+||xy|-2|(x+1)(y+2)=0,则1xy+1(x+1)(y+1)+…+1(x+2001)(y+2001)的值是()A.20002001B.20012002C.20022003D.20032004-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

已知
(x2-1)2+||xy|-2|
(x+1)(y+2)
=0,则
1
xy
+
1
(x+1)(y+1)
+…+
1
(x+2001)(y+2001)
的值是(  )
A.
2000
2001
B.
2001
2002
C.
2002
2003
D.
2003
2004
题型:单选题  难度:偏易

答案

(x2-1)2+||xy|-2|
(x+1)(y+2)
=0,
∴x2-1=0,|xy|-2=0,x+1≠0,y+2≠0,
∴x=1,y=2,
∴原式=
1
1×2
+
1
2×3
+…+
1
2002×2003

=1-
1
2
+
1
2
-
1
3
+…+
1
2002
-
1
2003

=1-
1
2003

=
2002
2003

故选C.

据专家权威分析,试题“已知(x2-1)2+||xy|-2|(x+1)(y+2)=0,则1xy+1(x+1)(y+1)+…+1(x+20..”主要考查你对  有理数的乘方  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图: