下列运算正确的是()A.4x6÷(2x2)=2x3B.2x-2=12x2C.(-2a2)3=-8a6D.a2-b2a-b=a-b-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

下列运算正确的是(  )
A.4x6÷(2x2)=2x3B.2x-2=
1
2x2
C.(-2a23=-8a6D.
a2-b2
a-b
=a-b
题型:单选题  难度:中档

答案

A、4x6÷(2x2)=2x4,故本选项错误,
B、2x-2=
2
x2
,故本选项错误,
C、(-2a23=-8a6,故本选项正确,
D、
a2-b2
a-b
=a+b,故本选项错误.
故选C.

据专家权威分析,试题“下列运算正确的是()A.4x6÷(2x2)=2x3B.2x-2=12x2C.(-2a2)3=-8a6D...”主要考查你对  有理数的乘方,零指数幂(负指数幂和指数为1),整式的除法,分式的基本性质   等考点的理解。关于这些考点的“档案”如下:

有理数的乘方零指数幂(负指数幂和指数为1)整式的除法分式的基本性质

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:整式的除法

  • 整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。

  • 整式的除法法则:
    1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
    数学符号表示: (a≠0,m、n为正整数,并且m>n)
    2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
    3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  • 整式的除法运算:
    单项式÷单项式
    单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
    注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
    说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
    单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。

考点名称:分式的基本性质

  • 分式的基本性质:
    分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
    (C≠0),其中A、B、C均为整式。

  • 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

    约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
    分式的约分步骤:
    (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
    (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

    通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.