代数式化简求值(1)化简求值:若(x+2)2+|y+3|+(z-1)2=0,求3x2y-{xyz-(2xyz-x2z)-4x2z+[3x2y-(4xyz-5x2z-3xyz)]}的值.(2)代数式2x2+ax-y+6与多项式2bx2-3x+5y-1的差与字母x的值-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

代数式化简求值
(1)化简求值:若(x+2)2+|y+3|+(z-1)2=0,求3x2y-{xyz-(2xyz-x2z)-4x2z+[3x2y-(4xyz-5x2z-3xyz)]}的值.
(2)代数式2x2+ax-y+6与多项式2bx2-3x+5y-1的差与字母x的值无关,求
1
3
a3-3b2-(
1
9
a3-2b2)的值.
题型:解答题  难度:中档

答案

(1)∵(x+2)2+|y+3|+(z-1)2=0,
∴x+2=0,y+3=0,z-1=0,
∴x=-2,y=-3,z=1,
则3x2y-{xyz-(2xyz-x2z)-4x2z+[3x2y-(4xyz-5x2z-3xyz)]}
=3x2y-{xyz-2xyz+x2z-4x2z+3x2y-4xyz+5x2z+3xyz}
=3x2y-{-2xyz+2x2z+3x2y}
=2xyz-2x2z,
代入值得,原式=2xyz-2x2z=12-8=4;

(2)2x2+ax-y+6-(2bx2-3x+5y-1)
=2x2+ax-y+6-2bx2+3x-5y+1
=(2-2b)x2+(a+3)x-6y+7
∵与字母x的值无关,
∴b=1,a=-3,
则原式=-9-3-3+2=-13.

据专家权威分析,试题“代数式化简求值(1)化简求值:若(x+2)2+|y+3|+(z-1)2=0,求3x2y-{x..”主要考查你对  有理数的乘方  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图: