下列关于有理数-10的表述正确的是()A.-(-10)<0B.-10>-110C.-102<0D.-(-10)2>0-数学
题文
下列关于有理数-10的表述正确的是( )
|
答案
A、-(-10)=10>0,错误; B、两个负数,绝对值大的反而小,错误; C、-102意思是10的平方的相反数,结果是-100,正确; D、-(-10)2意思是(-10)的平方的相反数,结果是-100,小于0,错误. 故选C. |
据专家权威分析,试题“下列关于有理数-10的表述正确的是()A.-(-10)<0B.-10>-110C.-102<..”主要考查你对 有理数的乘方,有理数定义及分类,比较有理数的大小 等考点的理解。关于这些考点的“档案”如下:
有理数的乘方有理数定义及分类比较有理数的大小
考点名称:有理数的乘方
- 有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。 - 乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。 - 有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。 - 乘方示意图:
考点名称:有理数定义及分类
- 有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。 - 有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数
考点名称:比较有理数的大小
- 比较有理数大小的方法:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
数轴法:
1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。
绝对值法:
1、两个正数比较大小,绝对值大的数大;
2、两个负数比较大小,绝对值大的数反而小。
差值法:
设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a<b
商值比较法:
设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a<b
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
上一篇:下列各组数中,数值相等的是()A.32和23B.-(3×2)2和-3×22C.-|23|和|-23|D.-23和(-2)3-数学
下一篇:下列各式中正确的是()A.x4+x4=x8B.[(x-y)3]2=[(x-y)2]3C.xa+xa+xa=x3aD.(5a+b)8=5a8+b8-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |