下列运算正确的是()A.2a3+5a2=7a5B.32-2=3C.(-x2)?(-x3)=-x5D.(13m-n)(-13m-n)=n2-19m2-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

主要方法:
1.提取公因式法:
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
提公因式法基本步骤:
(1)找出公因式
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
③提完公因式后,另一因式的项数与原多项式的项数相同。

2.公式法:
把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:
平方差公式:a2-b2=(a+b)·(a-b);
完全平方式:a2±2ab+b2=(a±b)2
立方差公式:

3.分组分解法:
利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)
其原则:
①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。
②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。

4.十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。

5.解方程法:
通过解方程来进行因式分解,如
x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)

6.待定系数法:
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例:
分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:
设x -x -5x -6x-4
=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得 a=1,b=1,c=-2,d=-4
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

考点名称:二次根式的加减

  • 二次根式加减法法则:
    先把式子中各项二次根式化成最简二次根式,然后再合并同类二次根式。
    1、同类二次根式
    一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
    2、合并同类二次根式
    把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
    3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
    例如:(1);2+3=5(2)+2=3
    4、注意:有括号时,要先去括号。

  • 二次根式的加减注意:
    ①二次根式合并同类项与合并同类项类似,因此二次根式的加减可以对比整式的加减进行;
    ②二次根式加减混合运算的是指就是合并同类项二次根式,不是同类二次根式不能合并。如+是最简结果,不能再合并;
    ③二次根式进行加减运算时,根号外的系数因式须保留假分数形式,如,不能写成5
    ④合并同类二次根式后若系数为多项式,须添加括号。