拉面中的数学问题截止到2002年3月,由我国拉面高手创造的吉尼斯纪录是用1kg面粉拉扣了21次.(1)请用计算器计算当时共拉出了多少根细面条?(2)经测量,当时每扣长为1.29m,那些-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

拉面中的数学问题
截止到2002年3月,由我国拉面高手创造的吉尼斯纪录是用1kg面粉拉扣了21次.
(1)请用计算器计算当时共拉出了多少根细面条?
(2)经测量,当时每扣长为1.29m,那些细面条的总长度能超过珠穆朗玛峰的高度吗?
题型:解答题  难度:中档

答案

(1)根据题意得:220=1048576(根),
则当时共拉出了1048576根细面条;
(2)根据题意得:1.29×1048576=1352663.04(厘米)=13526.66304(米)>8848米,
则那些细面条的总长度能超过珠穆朗玛峰的高度.

据专家权威分析,试题“拉面中的数学问题截止到2002年3月,由我国拉面高手创造的吉尼斯纪..”主要考查你对  有理数的乘方  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图: