如图,是正方体ABCD﹣A'B'C'D',以AB边所在直线为x轴,AD所在直线为Y轴,以A'A所在直线为Z轴,则A点的坐标记作(0,0,0),B(1,0,0),B′(1,0,1)。观察规律,请你写出-八年级数学

题文

如图,是正方体ABCD﹣A'B'C'D',以AB边所在直线为x轴,AD所在直线为Y轴,以A'A所在直线为Z轴,则A点的坐标记作(0,0,0),B(1,0,0),B′(1,0,1)。观察规律,请你写出其他各点的坐标,此处确定点的坐标需几个数据?与你以前所学过的知识矛盾吗?
题型:解答题  难度:中档

答案

解:
(1)其他各点的坐标为:
C(1,1,0);D(0,1,0);A'(0,0,1);C'(1,1,1);D'(0,1,1).
(2)此处确定点的坐标需要3个数据,与以前所学的知识不矛盾.

据专家权威分析,试题“如图,是正方体ABCD﹣A'B'C'D',以AB边所在直线为x轴,AD所在..”主要考查你对  认识立体几何图形,用坐标表示位置  等考点的理解。关于这些考点的“档案”如下:

认识立体几何图形用坐标表示位置

考点名称:认识立体几何图形

  • 立体几何图形:
    从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学研究的主要对象之一。有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个体最多看到立体图形实物三个面。

  • 常见立体几何图形及性质:
    ①正方体:
    有8个顶点,6个面。每个面面积相等(或每个面都有正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)
    ②长方体:
    有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。
    ③圆柱:
    上下两个面为大小相同的圆形。有一个曲面叫侧面。展开后为长方形或正方形或平行四边形。有无数条高,这些高的长度都相等。
    ④圆锥:
    有1个顶点,1个曲面,一个底面。展开后为扇形。只有1条高。四面体有1个顶点,四面六条棱高。
    ⑤直三棱柱:
    三条侧棱切平行,上表面和下表面是平行且全等的三角形。
    ⑥球:
    球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。

  • 常见的立体几何图形视图:
    几何图形 图形
    长方体
    正方体
    圆锥
    圆柱
    圆锥

考点名称:用坐标表示位置

  • 点的坐标的概念:
    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
    平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。

  • 各象限内点的坐标的特征 :
    点P(x,y)在第一象限;点P(x,y)在第二象限
    点P(x,y)在第三象限;点P(x,y)在第四象限

    坐标轴上的点的特征:
    点P(x,y)在x轴上y=0,x为任意实数
    点P(x,y)在y轴上x=0,y为任意实数
    点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)。

    点P(x,y)到坐标轴及原点的距离:
    (1)点P(x,y)到x轴的距离等于|y|;
    (2)点P(x,y)到y轴的距离等于|x|;
    (3)点P(x,y)到原点的距离等于

  • 坐标表示位置步骤:
    利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:
    (1)建立坐标系,选择一个适当的参照点为原点,确定X轴、y轴的正方向;
    (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
    (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐