以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角-数学
题文
以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角两边距离相等的点,在这个角的平分线上;⑤直棱柱的相邻两条侧棱互相平行但并不一定相等.其中正确的个数是( )
|
题文
以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角两边距离相等的点,在这个角的平分线上;⑤直棱柱的相邻两条侧棱互相平行但并不一定相等.其中正确的个数是( )
|
题型:单选题 难度:中档
答案
①互为对顶角的两个角相等,故①正确; ②平行线间的距离处处相等,故②正确; ③对称轴是一条直线,故③错误; ④角平分线上的点到角两边的距离相等,它的逆运用也成立,故④正确; ⑤直棱柱的侧面是个矩形,故相邻两条侧棱平行且相等,故⑤错误; 因此正确的结论有3个:①②④;故选B. |
据专家权威分析,试题“以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直..”主要考查你对 认识立体几何图形,平行线之间的距离,相交线,等腰三角形的性质,等腰三角形的判定,角平分线的性质 等考点的理解。关于这些考点的“档案”如下:
认识立体几何图形平行线之间的距离相交线等腰三角形的性质,等腰三角形的判定角平分线的性质
考点名称:认识立体几何图形
几何图形 | 图形 |
长方体 | |
正方体 | |
圆锥 | |
圆柱 | |
圆锥 | |
球 |
考点名称:平行线之间的距离
三种距离定义:
1.两点间的距离——连接两点的线段的长度;
2.点到直线的距离——直线外一点到这条直线的垂线段的长度;
3.两平行线的距离——两天平行线中,一条直线上的点到另一条直线的垂线段长度。
两直线间的距离公式:
设两条直线方程为
Ax+By+C1=0
Ax+By+C2=0
则其距离公式为|C1-C2|/√(A2+B2)
推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,
则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为
d=|Aa+Bb+C2|/√(A2+B2)=|-C1+C2|/√(A2+B2)
=|C1-C2|/√(A2+B2)
考点名称:相交线
相交线性质:
∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
我们得到了对顶角的性质:对顶角相等。
垂线:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14)
[教师分享] 给远方姐姐的一封信 (2018-11-07)
[教师分享] 伸缩门 (2018-11-07)
[教师分享] 回家乡 (2018-11-07)
[教师分享] 是风味也是人间 (2018-11-07)
[教师分享] 一句格言的启示 (2018-11-07)
[教师分享] 无规矩不成方圆 (2018-11-07)
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07)
[教师分享] 贪玩的小狗 (2018-11-07)
[教师分享] 未命名文章 (2018-11-07)